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Abstract-The effects of nonlinear temperature distribution on stability and natural convection in a 
horizontal porous layer, with heating from below, are investigated using the Brinkman model. The 
horizontal boundaries are either rigid/rigid, rigid/stress-free, or stress-free/stress-free. Constant-flux thermal 
boundary conditions are considered for which the onset of convection is known to correspond to a 
vanishingly small wavenumber. An analytical solution for the flow and heat transfer variables, based on 
a parallel flow assumption, is obtained in terms of the Darcy-Rayleigh number, R, and the Darcy number, 
Da. The critical Rayleigh number for the onset of convection arising from sudden heating or cooling at 
the boundaries is also predicted. Various basic temperature profiles are considered. Closed form solutions 
are obtained from which results for a viscous fluid (Da + co) and the Darcy porous medium (Da -P 0) 

emerge from the present analysis as limiting cases. 

INTRODUCTION 

NATURAL convection in a porous medium limited by 

two parallel plates maintaining an adverse tem- 
perature gradient is of interest to physicists, geo- 
physicists and engineers. Applications include con- 
vection in the earth’s crust, underground spread of 
pollutants, high performance insulation development 
and geothermal energy extraction. A large cross sec- 
tion of the fundamental research on this topic has 
been reviewed by Cheng [ 11. 

The early work by Lapwood [2] determined the 
conditions for the onset of convection in a porous 
medium with horizontal isothermal boundaries. On 
the basis of a linear stability analysis it was found that 
convection occurs at Rayleigh numbers above 47~‘. 
This result has been confirmed experimentally by 
Schneider [3], Katto and Masuoka [4], Combarnous 
[5], Bories [6], and Close et al. [7]. The stability of 
convection in a horizontal porous layer, subjected to 
an inclined temperature gradient of finite amplitude, 
was investigated by Weber [8] and Nield [9] respec- 
tively. The results showed that the critical Rayleigh 
number is always higher than 47r’. The onset of natural 
convection in a porous layer under other boundary 
conditions has been discussed by Nield [lo] and 
Ribando and Torrance [ll]. The stability of hori- 
zontal porous and viscous Auid layer, when the ther- 
mal gradient is not uniform, has been considered by 
Nield [12]. Using a Galerkin method, critical Rayleigh 
numbers were predicted by this author for various 
nonlinear basic temperature distributions and con- 
stant-flux conditions at both horizontal boundaries. 

Most of the work on the onset of convection in a 
porous medium is based on Darcy’s law which only 

takes into account the friction offered by the solid 
particles to the fluid. This is found to give satisfactory 
results when the porous medium is closely packed and 
with low porosity. On the other hand, Darcy’s law 
cannot account for the no-slip boundary condition at 
the interface of a porous medium and a solid bound- 
ary, nor satisfy the continuity of velocity at the inter- 
face of a porous medium in contact with a viscous 
fluid. The Brinkman [13] extension of Darcy’s law 
gets around these obstacles by adding a viscous like 
term to the equations. 

The Brinkman model was used by Walker and 
Homsy [ 141 to determine the critical Rayleigh number 
against Darcy number for the case of conduct- 
ing no-slip boundaries. Rudraiah et al. [15] have 
considered the Brinkman equation to study the onset 
of convection with nonlinear basic temperature 
profiles. The resulting critical Rayleigh numbers, ob- 
tained by using a one-term Galerkin approximation 
in their calculation, were found to be in good agree- 
ment, in the limit of very large Darcy numbers, with 
the values reported by Nield [ 121 for the viscous-fluid 
problem. However, in the limit of very small Darcy 
numbers, a large discrepancy was observed between 
their results and those obtained by Nield [12] on the 
basis of the Darcy equations. Recently, the Brinkman 
model was used by Vasseur et al. [16] to study the 
onset of convection in a porous medium heated from 
below by a constant heat flux. Using a parallel 
flow approximation critical Rayleigh numbers were 
obtained explicitly in terms of the Darcy number for 
various hydrodynamic boundary conditions. It was 
found that the results of viscous fluid and the Darcy 
medium emerge from their solution as special cases. 
It is thus evident that the discrepancies observed in 
the results obtained by Rudraiah et al. [ 151 are due to 
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NOMENCLATURE 

A aspect ratio, H’/L’ LI dimensionless velocity in .l--direction. 
C dimensionless temperature gradient in .Y Ll’L’/E, 

direction 1’ dimensionless velocity in I,-direction, 
na Darcy number, K/L” fL’/X, 

9 gravitational acceleration .Y dimensionless horizontal coordinate. 
H’ depth of cavity \-’ ‘I.’ 
k effective thermal conductivity of the .r dimensionless vertical velocity. .I,‘; L’. 

saturated porous medium 
K permeability of the porous medium 
I>’ width of cavity Greek symbols 
NU Nusselt number, equation (17) 2 dimensionless Darcy parameter. Du ’ ’ 
(/’ uniform heat flux 

;’ 
thermal diffusivity of fluid 

R DarcyyRayleigh number. g,GKL”q’/kn,.v coefficient of thermal expansion of the 
RU Rayleigh number for a fluid, R/Do fluid 

R, critical Rayleigh number for a porous 0 ),-dependent temperature term 
medium \ kinematic viscosity 

Ra, critical Rayleigh number for a fluid P density of fluid 
s dimensionless uniform heat sink (&‘), heat capacity of fluid 
t dimensionless time (PC), heat capacity of saturated porous 
T* dimensionless temperature medium 
T dimensionless quasi-steady state (i heat capacity ratio, (pC),/(l~(‘), 

temperature, T* -St/o dJ dimensionless stream function, $‘,‘x,, 

T;*’ reference temperature at the origin 
AT’ tcmperdture scale, q’L’,‘k 
AT wall to wall dimensionless temperature Superscript 

difference at I = 0 dimensional quantity. 

the use of a single-term Galerkin expansion in their 
calculation. 

The objective of the present study is to determine 
the critical Rayleigh numbers for the onset of con- 
vection, in the case of the Brinkman model, using the 
parallel Aow analysis. In the first part of this paper, a 
shallow porous cavity heated from below by a con- 
stant heat flux, the other surfaces being insulated, 
is considered with various hydrodynamic boundary 
conditions on the upper and lower surfaces. Critical 
Rayleigh numbers covering the whole range of Darcy 
numbers, from the limit cases of Darcy to viscous 
fluid, are obtained. In the second part of this paper. 
the problem of Rudraiah et al. [I 51, namely the onset 

of convection in a Brinkman layer with non-linear 
basic temperature profiles, will be reconsidered using 
the parallel flow analysis. It is demonstrated that the 
resulting solution, in contradiction with that of 
Rudraiah et rd. [15], can recover the limiting case of 

a pure Darcy layer. 

MATHEMATICAL FORMULATION AND 

ANALYTICAL SOLUTION 

We consider a fluid-saturated porous layer con- 
tained in a horizontal rectangular cavity of elongated 
shape, bounded by two rigid vertical side walls and 
two long horizontal boundaries at _r’ = 0 and L’ that 

may be both rigid, upper stress-free and lower rigid. 
or both stress-free. The layer is heated from the 

bottom by a constant heat flux q’ such that 

n T* 
q, = -kV 

(71“ (1) 

where k is the effective thermal conductivity of the 
saturated porous medium, T*‘. the temperature and 
primes denote dimensional variables. The other sur- 
faces of the porous medium are insulated. 

The following dimensionless variables are used 

T* = CT*‘- 7’3, 
AT’ 

AT, = y;L’ 
i = f (2) 

k’ I 

where (u’, Y), $’ and cur represent the volume-averaged 
fluid velocity components, the stream function and 
the thermal diffusivity of the fluid, respectively. T:’ is 
the temperature at the origin of the coordinate system 
and AT’, a characteristic temperature difference. 

Assuming the validity of Brinkman’s law and the 
Boussinesq approximation and neglecting inertial 

effects, the equations describing conservation 
of momentum and energy in the medium are 
respectively : 
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where Da = K/L’= is the Darcy number and R = 

g/lKL’2q’/kcc,v is the Darcy-Rayleigh number, and 
K, g, /I, and o are the permeability of the porous 
material, the acceleration due to gravity, the 

coefficient of thermal expansion and the heat capacity 
ratio, respectively. 

Due to the thermal boundary conditions considered 
here the resulting natural convection heat transfer is 
clearly transient. However, if the heating process is 

maintained long enough, a quasi-steady state will 
be reached, such that local temperature gradients, 
velocities and other parameters become nearly inde- 
pendent of time. At quasi-steady state, the tempera- 
ture itself continues to increase with time, however its 

time dependence is the same at every point. Defining 
T = T* -St/a, equation (4) becomes at quasi-steady 

state 

V”T=~T3!_~T3!+S 
ax ay ay ax (5) 

and is now independent of time. In equation (5), S = 1 
can be regarded as uniform sink term. 

An approximate solution to the above problem can 
be sought in the case of a long shallow cavity 
(A -+ co, where A = H//L’ is the cavity aspect ratio). 
In this limit, as discussed in detail by Cormack et al. 

[17], Walker and Homsy [18], Vasseur et al. [16] and 
other authors, the flow in the central part of the cavity 
can be assumed to be parallel and in the x direction. 
Consequently, as demonstrated by Cormack et al. 

[17], the flow and temperature fields must be of the 
following form 

and 

t&Y) = G(Y) (6) 

T(x, Y) = Cx + 6(Y) (7) 

where C is the unknown but constant temperature 
gradient in the x-direction. Substituting equations 
(6) and (7) into equations (3) and (5) one obtains 
respectively 

2 _,=!? = cr=RC 

dy dy2 
and 

C3= -!?+S 
dy 

where x2 = Da- ‘. 

The solutions to the above equations are of the 
form 

and 

ti = =F(Y) (10) 

0 = RC=Z(y) +8, (11) 

where F(y) and Z(y) depend upon the hydrodynamic 

and thermal boundary conditions, imposed on the 
porous layer in the y-direction, respectively. 8, is the 
temperature profile for pure conduction regime. 

The thermal boundary conditions in the x-direction 
cannot be satisfied exactly with the parallel flow 
approximation. However, we can impose an equiv- 
alent energy flux condition in that direction (Bejan 
[19]) such that 

C= 
’ dti s I - Ody. 

o dy x 
(12) 

Substituting equations (10) and (11) into equation 
(12) it is readily found that 

C = RCI, + R2C312 (134 

or dividing by C 

C = + ,/((l - RI,)II,))IR (13b) 

where the values of I, and I, are given respectively by 

s ’ dF 
I, = --ecdy 

o dy 

’ dF 
I, = 

s 
PZdy. 

o dY 

(14) 

Thus the value of the axial temperature gradient C 
may be evaluated, from equation (13), for a given 
Darcy-Rayleigh number R and Darcy number Da. 

From physical considerations, I, and I2 are always 
positive and negative respectively. If RI, > 1, equa- 
tion (13b) indicates that, in addition to the trivial 
solution C = 0 of equation (13a), two sets of solutions 
with positive and negative real roots of C exist, giving 
rise to convection cells in opposite directions. When 

RI, < 1, C = 0 is the only real root of (13a) and there 
is no convection. The marginal state, which deter- 
mines the critical Rayleigh number R, for the onset of 
convection is when R,I, = 1, that is 

R, = l/r,. (16) 

This prediction of the critical Darcy-Rayleigh num- 
ber is correctly obtained from the present parallel-flow 
analysis because the convection, that occurs when a 

constant heat flux is applied on the boundaries of 
a horizontal layer, is at zero wave number (Nield 
[lo, 121, Kulacki and Goldstein [20]). 

The Nusselt number Nu, for the present problem, 
is given by 

Nu = ATJAT (17) 

where AT = T(0, 0)- T(0, 1) is the wall-to-wall 
dimensionless temperature differences and AT, = l/2 
the corresponding value for pure conduction regime. 

As stated earlier, in the remaining part of this sec- 
tion we will consider situations where the bounding 
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horizontal walls are both rigid or both stress-free or 

lower boundary rigid and upper boundary stress-free. 

i) Both horizontal hounduries ri,qid 

In this case the appropriate boundary conditions 
arc 

tj = dtj/dJ = 0 dO/dr = - 1 at J’ = 0 

$ = drl/jdy = 0 dO/dr = 0 atI’= I. (18) 

Thus, as opposed to the Darcy model, the above 
boundary conditions imply a zero velocity on the rigid 
boundaries for any Da. The solutions to equations (8) 
and (9) arc given by equations (10) and (1 1) whcrc 

-cothai’2-r(_r’-r) 

(19) 

Substituting equations (19)-(21) into equations 
(14) and (15) and integrating it is readily found that 

I, -2: I+;;-zcothr2 1 (221 
and 

L. ROBILLARD 

theory stability criteria, it was found that the onset 
of convection occurs at zero wavenumber when 
Rrr, = 1433.6. 

From the tcmperaturc distribution, the Nussclt 
number is given by equation (17) as 

/vu= I-RC’ 
/ ! 1 2 I 

6 + xi - a coth ai2 
ii ’ (233 

ii) Both horizontal boundaries stress-fiw 
If both upper and lower surface arc stress-free the 

boundary conditions are 

ti/ = d’$/d$ = 0 do/d), = -1 at r = 0 

I/$ = d’$/d$ = 0 dO/dj, = 0 at j’ = 1. (26) 

Here, the velocity gradient is zero at the boundary for 
any Da. Such a constraint does not exist in the Darcy 
model. The functions Fand Z, satisfying the boundary 
conditions (26), are given by 

(37) 

Substituting equations (27), (28). and (21) into 
equations (14) and (15) and integrating yields 

24 
r i tanh x/2 (29) 

and 

(23) / (sinhr-x) 1 3 6 

I 
= _ 

2%’ cash’ a!‘2 

+~! 

120 6a’ r‘I fx5 l‘- tanh ~1’). 

Thus, for given values of R and Da, the temperature 
gradient C can be evaluated from equations (13). (22) 
and (23). The stream function and temperature fields 
are then known from equations (lo), (11) and (19)) 

(21). 
From equations (16) and (22) the critical Rayleigh 

number is given by 

I+;-;coth(a/2) 
1’ 

(24) 

We note that when u is very large, i.e. considering 
only the Darcy resistance, we have R, = 24. However, 
when E -+ 0 (i.e. viscous fluid case), Ra, = 1440 where 
Ru = R/Da is the Rayleigh number for a viscous fluid. 
The equivalent prcblem of a fluid layer, heated intern- 
ally by a uniform volumetric energy source (S = - 1) 
and cooled from above by a constant heat flux while 
the lower boundary is insulated, has been studied by 
Kulacki and Goldstein [20]. Using linear and energy 

(30) 

Thus, the temperature gradient C can be evaluated 
from equations (13) (29) and (30) and the stream 
function and temperature fields are then known from 
equations (IO), (1 l), (27), (28). and (21). 

The critical Rayleigh number, for the onset of con- 
vection, is obtained from equations (16) and (29) as 

12 24 

I 

I 
R, = 24 l- 

(x2 + x3 
tanh r/2 (31) 

such that R, = 24 when a is very large (Darcy case) 
and Ra, = 240 when CI is very small (viscous fluid 
case). 

From the temperature distribution, the Nusselt 
number is 

Nu = 
2 tanhc(/2 1 

-. s(‘_ _ ~’ + !- 
12 

(32) 
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iii) Lower boundary rigid and upper stress-free 
In this case, the appropriate boundary conditions 

are 

$ = d$/dy = 0 dejdy = - 1 at y = 0 

$ = d2$/dy2 = 0 dQ/dy = 0 aty= 1. (33) 

The functions F and Z satisfying the above bound- 
ary conditions are 

F= k Asinhcly+B(coshcry-1) 

+(y-y2)$+LL%y (34) 1 
L J 

z= +[4,,,;(D+gy2 

+qy’---Acoshay-Bsinhay (35) 1 
where 

A = CI cash TV - (4/a) sinh2 u/2 

B = (2/a)sinhcc-asinha-2 

D = - sinh LX + (4/a) sinh’ LX/~ 

H = 2(sinh c( - LX cash a). (36) 

The values of I, and I2 are found from equations 
(14), (15), (21) and (34)-(36). For this situation, the 
critical Rayleigh number is given by : 

16cosh2 u/2 
Hi (a tanh ~712 

1 
-I 

- 2 tanh2 a/2) (37) 

which has a value Ra, = 720 when a -+ 0. Using linear 
and energy theory stability criteria, a value Ra, = 
723.2 was obtained by Kulacki and Goldstein [20] for 
a fluid layer. 

The Nusselt number is given by equations (17), (21) 
and (35) as : 

+cosha 6 - $) +4c+$]]-‘. (38) 

With the present hydrodynamic boundary con- 
ditions, it is also of interest to consider the case of 
a layer heated by uniformly distributed heat source 
(S = - 1) and cooled from above by a constant heat 
flux. This problem is equivalent to thermal boundary 
conditions (33) with stress-free and rigid hydro- 
dynamic boundary conditions on lower and upper 
boundaries respectively. For this situation, 0, = 
-y*/2 and from equations (14), (16) and (34) it is 
found that : 

1- $[AF, +BF2+Da3/3] 1 -’ (39) 

where A, B, D and Hare given by equations (36) and 

F, = (a2+2)sinha-2acosha 

F2 = (Cr2+2)cosha---2xsinhcr-2. 

From equation (39) it results that Ra, = 576 when 
LY + 0, a value already obtained by Kulacki and 
Goldstein [20] for a fluid layer. 

CONVECTION DUE TO SUDDEN HEATING OR 

COOLING 

In this section we will show that the parallel flow 
analysis, in contrast with the one-term Galerkin 
approximation used by Rudraiah et af. [15], provides 
a smooth transition between the pure fluid layer and 
the Darcy porous medium, in the establishment of the 
critical Rayleigh for the onset of convection. Both the 
piecewise linear and step function temperature profiles 
studied by Rudraiah et al. [ 151 will be considered. The 
governing equations are still given by equations (3) 
and (5) with the uniform sink term S set to zero. We 
recall here that the parallel flow analysis lies on the 
established fact that the onset of convection occurs at 
zero wavenumber when constant heat flux conditions 
are applied on upper and lower boundaries, as dem- 
onstrated formally by Nield [12], both in the case 
of a fluid and a Darcy horizontal layer and also by 
Rudraiah et al. [15] for a Brinkman layer. Under 
this condition, it will be shown that the parallel flow 
analysis leads to a closed-form solution of R, as a 
function of Da for all the cases considered in this 
section. 

i) Step function temperature projile 
We consider here the step-function temperature 

profile, in which the basic temperature drops suddenly 
by an amount AT at y = q, such that 

0, = 
[ 

0, OGy<r/- 

-1, q<y<l. (40) 

When both boundaries are rigid (RR), the critical 
Rayleigh number is obtained from equations (14), 
(16), (19) and (40) as 

11 
-1 

- coth u/2 . (41) 

As q increases from 0 to 1, R, decreases from cc to 
a minimum value and then increases again to cc. The 
minimum value of R,, attained at n = 0.5, i.e. midway 
between the boundaries, is given by : 
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1 
R, = $ + (42) 

such that we get R, = 8 when a + x. and Ra, = 384 
when c1+ 0. 

When both boundaries are stress-free (FE‘), equa- 
tions (14), (16), (27) and (40) yield: 

,_ ~~~~(1,‘2-~) ’ 
cash ai2 11 

(43) 

This has a minimum value : 

when q = 0.5. When c( --t 0, Ra, = 38415 = 76.8 which 
is the known value (Nield 1121). 

In the case when the lower boundary is rigid and 
the upper stress-free (RF), it is found from equations 

(14), (16), (34) and (40) that 

R, = (45) 

where 

F= sinha(1 -q)+ zcoshaq 

- ~Ycosh~(l/2-~)sinh~/2 

and H and D are given in equations (36). 
When a + m equation (45) has a minimum value 

R, = 8 attained at ye = 0.5. For small values of c(, 
Ra, = 184.6 is minimum when q = 0.578. Thus, as the 

Darcy number is increased. the influence of the upper 
free surface becomes significant and the most desta- 
bilizing stepfunction has the step closer and closer to 
the free surface. 

The critical Darcy-Rayleigh number R, for the 
onset of convection in a Brinkman layer with a step- 

function temperature profile is presented in Fig. 1 as a 

R,=E (Nleld [1211 

FIG. 1. Critical Darcy-Rayleigh number R, as a function of 
Darcy number Du for a step function temperature profile. 

function of Da for the three hydrodynamic boundary 
conditions considered in this section. The solid curves 
are the results of equations (42). (44) and the mini- 
mum values of equation (45) which arc obtained at 
a particular 11 (Q~) function of /Z)U. As mentioned 
earlier, the values R, = 8 for a Darcy medium and 
Ru, = 384 and 184.6 for a fluid layer with RR and RF 
boundaries have been predicted in the past by Nield 
[12]. When Da is small (<IO 0. the three curves 

predicted by the present study are seen to approach 
asymptotically the Darcy value R, = 8. Also, when 
11~ is large enough. each of the curves tends asymptot- 
ically toward the particular critical Rayleigh number 

for a fluid layer with corresponding hydrodynamic 
boundary conditions. Also shown in Fig. 1 are the 
results predicted by Rudraiah er ~1. [15] on the basis 
of a Galerkin approximation. Although their results 
predict the viscous fluid situation correctly, they arc 
obviously wrong in the limit of a Darcy situation 
(DN + 0). The failure to predict correctly the Darcy 
limit encountered in the work by Rudraiah et ~1. [ 151 
is due to the poor approximation (one-term Galerkin 
expansion) used to solve the Brinkman equation. It 
must be noticed though that a similar approximation 
applied separately to the Darcy and to the fluid equa- 
tions provides accurate values of the critical Rayleigh 

numbers (Nield [12]). 
For the case where the lower and upper boundaries 

arc respectively rigid and stress-free (RF), it has 

already been mentioned that II,,, is a function of &r. 
The asymptotic values q”, = 0.5 and II,,, = 0.578 pre- 
dicted by Nield for the Darcy and the pure fluid limit 
respectively are recovered by the present solution 
whereas the solution by Rudraiah c’( ul. [ 151 predicts 
a constant value t~,,~ = 0.5 for any /)rr. 

ii) Piece~~isc-linear pwfilc 

We consider now the piecewise-linear profile. which 
approximates the profile for heating from below. 
given by 

When both the boundaries arc rigid, it may bc 
shown, from equations (14), (16). (19) and (46). that 
the critical Rayleigh number is given by 

(47) 

which has a minimum of 9619. attained at 9 = 0.75, 
when CI --t m and a minimum of 601.1, at 11 = 0.724. 
when r + 0. 

The critical Rayleigh number for a Brinkman layer 
heated from below and cooled from above by constant 
heat fluxes is obtained, by substituting q = 1 into 
equation (47), as 
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cotha/ -’ A+$-,- 1 (48) 

yielding the exact values R, = 12 when c( -+ cc and 
Ra, = 720 when c( -+ 0. 

When both the boundaries are stress-free, it is 
readily found, from equations (14), (16) (27) and 
(46) that : 

R = (3~2~2) 
C 12 

sinhcr(1/2-q) -’ - 
cash u/2 11 (49) 

which has a minimum value of 96/9, attained at 
Y) = 0.75, when LY + cc and a minimum value of 
Ra, = 105.57, at 9 = 0.744, when LY + 0. 

When r] = 1, equation (49) reduces to : 

ifi--$+$tanha/2 1 
-I (50) 

such that R, = 12 when CI + co and Ra, = 120 when 
LY + 0, the known values for a Darcy and a fluid layer 
heated from below by a basic temperature gradient 
aecjaz = I. 

When the lower boundary is rigid and the upper 
stress-free, equations (14), (16), (34) and (46) yield : 

R = (3r/-2$) + AE+BF+D$(r//2- 1) -’ 
C 

[ 12 H?/U2 1 
(51) 

where 

E = coshr]cc-r]crsinhcc-1 

F = sinh qcc - ~a cash c( 

and A, B, D and H are given in equations (36). The 
above equation has a minimum of & = 96/9, attained 
at r) = 0.75, when tl -+ co while Ra, = 292.6, attained 
at q = 0.821, when CY -+ 0. 

Setting r] = 1 into equation (51) it is found that 

[2cr + (c(’ - 8) tanh a/2 

1 
-1 

- (a -~/CC) tanh* cr/2] (52) 

such that R, = 12 when u -+ co and Ra, = 320 when 
a + 0, the known values for a Darcy and a fluid layer 
heated from below and cooled from above by constant 
heat fluxes. 

For the piecewise linear profile given by 

[ 

0, 
0, = 

o<y<r/ 
(1 -v)/(l --rlh rl < Y G 1 (53) 

which approximates the profile for cooling from 
above. For this situation, when the upper boundary 
is stress-free and the lower rigid, we have 

Da 

FIG. 2. Critical Darcy-Rayleigh number R, as a function of 
Darcy number for a piecewise-linear temperature profile. 

[AE+BF+Dcr2(1+q2)/2] -’ 

Hct*(l -q) 1 
(54) 

where 

E= asinha(l-q)-coshcrfcoshctq 

F= cccoshcc(l-q)-sinhcr+sinhctq. 

Equation (54) has a minimum value of R, = 96/9, 
attained at q = 0.25, when CY + co and a minimum 
value of Ra, = 252, attained at n = 0.362, when 
t( -+ 0. 

The minimum value of R, corresponding to a 
specific q (QJ, has been plotted as a function of Da 

for each of the equations (47), (49), (51) and (54) in 
Fig. 2 (curves RR, FF, RF, and RF2, respectively). 
Q,, as a function of Da is shown in Figs. 3(a), (b). 

0.94 L I 

0.50 

10 2 

Da 

0.40 

0.35 

‘I, 
0.30 

10" 104 104 10 4 10.' 10" 10' 
Da 

FIG. 3. Thermal depth parameter q,,, as a function of Darcy 
number for the onset of convection for a piecewise-linear 

temperature profile: (a) RR, FF, RF, ; (b) RF,. 
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CONCLUSIONS 

The problem of unicellular laminar natural con- 
vection in a horizontal porous layer heated from 
below by a constant heat flux, while the other bound- 

aries are maintained adiabatic, has been investigated 
analytically, using the Brinkman model. Although the 
problem is basically transient, it is shown that. at ;I 
sufficiently large time after heating, a quasi-steady 
state is reached for which local temperature gradients, 
velocities and other parameters become very nearly 

independent of time. The governing equations for the 
porous layer arc solved analytically. in the limit of a 

thin layer using various combinations of hydro- 
dynamic boundary conditions at the upper and lower 
surfaces. Results are obtained in terms of an overall 
Nusselt number as a function of Rayleigh and Darcy 
numbers. The critical Rayleigh number for the onset 

of convection is predicted explicitly in terms of the 
Darcy number for each of the hydrodynamic bound- 
ary conditions considered in this study. 

The effect of nonlinear temperature distribution, 
arising either from sudden heating or cooling in a fluid 

saturated porous medium. has also been considered. 
Using the parallel flow analysis, ‘exact’ values for 
the critical Rayleigh number have been obtained for 
various combinations of hydrodynamic boundary 
conditions at the upper and lower adiabatic surfaces. 
The results obtained are compared to the existing 
values for a viscous fluid (DLI --t -c) and the Darcy 
porous medium (Dn + 0) and good agreement is 
found. The same problem has been solved in the past 
by Rudraiah et al. [15] using a single-term Galerkin 
approximation but their results showed a poor agrce- 

ment with the solution of Nield [12] in the Darcy limit. 

It is demonstrated that this is due. as suggested by 
Nield [21, 231, to the crude approximation used by 
Rudraiah it al. [ 151 in their calculations. 
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